Affiliated to
DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW


## Evaluation Scheme \& Syllabus

For
B. Tech in Electronics \& Communication Engineering (ECE) First Year (Effective from the Session: 2020-21)

## NOIDA INSTITUTE OF ENGINEERING \& TECHNOLOGY, GREATER NOIDA <br> (An Autonomous Institute)

## B. TECH (ECE)

## Evaluation Scheme

## SEMESTER I

| $\begin{gathered} \text { Sl. } \\ \mathbf{N} \\ \mathbf{0} . \end{gathered}$ | Subject Codes | Subject | Periods |  |  | Evaluation Schemes |  |  |  | $\qquad$ |  | Total | $\underset{t}{\text { Credi }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | L | T | P | $\begin{aligned} & \mathrm{C} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathbf{T} \\ & \mathbf{A} \end{aligned}$ | $\underset{\mathrm{L}}{\mathrm{TOTA}}$ | PS | $\begin{aligned} & \mathbf{T} \\ & \mathbf{E} \end{aligned}$ | $\begin{aligned} & \hline \mathbf{P} \\ & \mathbf{E} \end{aligned}$ |  |  |
| 3 WEEKS COMPULSORY INDUCTION PROGRAM |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | AAS0103 | Engineering Mathematics-I | 3 | 1 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 4 |
| 2 | AAS0101C | Engineering Physics | 3 | 1 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 4 |
| 3 | ACSE0101 | Problem Solving using Python | 3 | 0 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 3 |
| 4 | AASL0101 | Professional Communication | 2 | 0 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 2 |
| 5 | AAS0151C | Engineering Physics Lab | 0 | 0 | 2 |  |  |  | 25 |  | $\begin{aligned} & 2 \\ & 5 \end{aligned}$ | 50 | 1 |
| 6 | ACSE0151 | Problem Solving using Python Lab | 0 | 0 | 2 |  |  |  | 25 |  | 2 5 | 50 | 1 |
| 7 | AASL0151 | Professional Communication Lab | 0 | 0 | 2 |  |  |  | 25 |  | 2 5 | 50 | 1 |
| 8 | AME0151 | Digital Manufacturing Practices | 0 | 0 | 3 |  |  |  | 25 |  | $\begin{aligned} & 2 \\ & 5 \\ & \hline \end{aligned}$ | 50 | 1.5 |
| 9 |  | MOOCs (For B.Tech. Hons. Degree) |  |  |  |  |  |  |  |  |  |  |  |
|  |  | TOTAL |  |  |  |  |  |  |  |  |  | 800 | 17.5 |

# Abbreviation Used:- <br> L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam. <br> NOIDA INSTITUTE OF ENGINEERING \& TECHNOLOGY, GREATER NOIDA <br> (An Autonomous Institute) <br> <br> B. TECH (ECE) <br> <br> B. TECH (ECE) <br> <br> Evaluation Scheme <br> <br> Evaluation Scheme SEMESTER II 

 SEMESTER II}

| $\begin{aligned} & \text { Sl. } \\ & \text { No. } \end{aligned}$ | Subject Codes | Subject | Periods |  |  | Evaluation Schemes |  |  |  | $\begin{aligned} & \text { End } \\ & \text { Semeste } \\ & \text { r } \end{aligned}$ |  | $\begin{gathered} \text { Tot } \\ \text { al } \end{gathered}$ | $\underset{t}{\text { Credi }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | L | T | P | CT | TA | total | PS | TE | PE |  |  |
| 1 | AAS0203 | Engineering Mathematics-II | 3 | 1 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 4 |
| 2 | AASO202 | Engineering Chemistry | 3 | 1 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 4 |
| 3 | $\begin{gathered} \text { ACSEO20 } \\ 1 \\ \hline \end{gathered}$ | Programming for Problem Solving using C | 3 | 0 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 3 |
| 4 | AEC0201 | Basic Electrical and Electronics Engineering. | 3 | 1 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 4 |
| 5 |  | Foreign Language* | 2 | 0 | 0 | 30 | 20 | 50 |  | 50 |  | 100 | 2 |
| 6 | AAS0252 | Engineering Chemistry Lab | 0 | 0 | 2 |  |  |  | 25 |  | 25 | 50 | 1 |
| 7 | AEC0251 | Basic Electrical and Electronics Engineering Lab | 0 | 0 | 2 |  |  |  | 25 |  | 25 | 50 | 1 |
| 8 | $\begin{gathered} \text { ACSE025 } \\ 1 \end{gathered}$ | Programming for Problem Solving using C Lab | 0 | 0 | 2 |  |  |  | 25 |  | 25 | 50 | 1 |
| 9 | $\begin{gathered} \text { AME025 } \\ 2 \\ \hline \end{gathered}$ | Engineering Graphics \&Solid Modelling | 0 | 0 | 3 |  |  |  | 25 |  | 25 | 50 | 1.5 |
| 10 |  | MOOCs (For B.Tech. Hons. Degree) |  |  |  |  |  |  |  |  |  |  |  |
|  |  | TOTAL |  |  |  |  |  |  |  |  |  | 900 | 21.5 |

Mini Project or Internship (3-4 weeks) shall be conducted during summer break after II semester and will be assessed during III semester

* List of MOOCs (NPTEL) Based Recommended Courses for first year B. Tech Students

1. Developing Soft Skills and personality-Odd Semester-8 Weeks-3 Credits
2. Enhancing Soft Skills and personality-Even Semester-8 Weeks-3 Credits

* AICTE Guidelines in Model Curriculum:

After successful completion of 160 credits, a student shall be eligible to get Under Graduate degree in Engineering. A student will be eligible to get Under Graduate degree with Honours only, if he/she completes additional university recommended courses only (Equivalent to 20 credits; NPTEL Courses of 4 Weeks, 8 Weeks and 12 Weeks shall be of 2, 3 and 4 Credits respectively) through MOOCs. For registration to MOOCs Courses, the students shall follow NPTEL Site http://nptel.ac.in/ as per the NPTEL policy and norms. The students can register for these courses through NPTEL directly as per the course offering in Odd/Even Semesters at NPTEL. These NPTEL courses (recommended by the University) may be cleared during the B. Tech degree program (not necessary one course in each semester). After successful completion of these MooCs courses the students, shall, provide their successful completion NPTEL status/certificates to the University (COE) through their college of study only. The student shall be awarded Hons. Degree (on successful completion of MOOCS based 20 credit) only if he/she secures 7.50 or above CGPA and passed each subject of that Degree Programme in single attempt without any grace marks.

Abbreviation Used:-
L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.
NOIDA INSTITUTE OF ENGINEERING \& TECHNOLOGY, GREATER NOIDA
(An Autonomous Institute)
B. TECH (ECE)
*Foreign Language :

1. AASLO202 French
2. AASL0203 German
3. AASLO204 Japanese


| CO 3 | Apply partial differentiation for evaluating maxima, minima, Taylor's series and Jacobians. | $\mathrm{K}_{3}$ |
| :--- | :--- | :--- |
| CO 4 | Apply the concept of multiple integral to find area, volume, centre of mass and centre of <br> gravity. | $\mathrm{K}_{3}$ |
| CO 5 | Solve the problems of Profit, Loss, Number \& Series, Coding \& decoding. | $\mathrm{K}_{3}$ |

## Text books

(1) B. V. Ramana, Higher Engineering Mathematics, Tata Mc Graw-Hill Publishing Company Ltd..
(2) B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher.
(3) R K. Jain \& S R K. Iyenger , Advance Engineering Mathematics, Narosa Publishing House .

## Reference Books:

(1) E. Kreyszig, Advance Engineering Mathematics, John Wiley \& Sons.
(2) Peter V. O’Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning.
(3) Maurice D. Weir, Joel Hass, Frank R. Giordano, Thomas, Calculus, Eleventh Edition, Pearson.
(4) D. Poole, Linear Algebra : A Modern Introduction, 2nd Edition, Brooks/Cole.
(5) Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
(6) Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, Tata Mc-Graw-Hill; Sixth Edition.
(7) P. Sivaramakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st Edition, Pearson India Education Services Pvt. Ltd
(8) Advanced Engineering Mathematics. Chandrika Prasad, ReenaGarg.
(9) Engineering Mathemathics - I. ReenaGarg.
(10) Quantitative Aptitude by R.S. Aggrawal.

## Link:

| Unit 1 | $\underline{\text { https://www.youtube.com/watch?v=kcL5WWJjmIU }}$ |
| :--- | :--- |
|  | $\underline{\text { https://www.youtube.com/watch?v=VTHz4gjzsKI }}$ |
|  | $\underline{\text { https://youtu.be/56dEt9EOZ_M }}$ |
|  | $\underline{\text { https://www.youtube.com/watch?v=njDiwB43w80 }}$ |
|  | $\underline{\text { https://www.//www.youtube.com/watch?v=N33SOw1A5fo }}$ |
|  |  |


|  | www.math.ku.edu/~lerner/LAnotes/Chapter5.pdf http://www.math.hawaii.edu/~lee/linear/sys-eq.pdf https://youtu.be/41Y38WjHbtE <br> https://www.youtube.com/watch?v=4jcvZmMK 28 <br> https://www.youtube.com/watch?v=G4N8vJpf7hM <br> https://www.youtube.com/watch?v=r5dIXpssvrA <br> https://youtu.be/ZX5YnDMzwbs <br> http://web.mit.edu/2.151/www/Handouts/CayleyHamilton.pdf <br> https://www.youtube.com/watch?v=iKQESPLDnnI <br> https://math.okstate.edu/people/binegar/3013-S99/3013-116.pdf <br> https://www.youtube.com/watch?v=kGdezES-bDU |
| :---: | :---: |
| Unit 2 | https://www.youtube.com/watch? <br> v=tQxk5IX9S_8\&list=PLbu_fGT0MPstS3DTIyqkUecSW_7axdxKe <br> https://www.youtube.com/watch?v=U5sGFf0DjLs\&t=34s <br> https://www.youtube.com/watch?v=TCPPvRfHtXw <br> https://www.youtube.com/watch? <br> v=PkuPGKSacu0\&list=PL2FUpm_Ld1Q3H00wVFuwjWOo1gtMXk1eb <br> https://www.youtube.com/watch?v=QeWrQ9Fz3Wo\&t=22s <br> https://www.youtube.com/watch?v=5dFrWCE6bHg <br> $\underline{\text { https: } / / w w w . y o u t u b e . c o m / w a t c h ? v=W X 609 T i F Y s A \& t=110 s ~}$ <br> https://www.youtube.com/watch? <br> $\mathrm{v}=\mathrm{GII} 1 \mathrm{ssdR} 2 \mathrm{cg} \& \mathrm{list}=\mathrm{PLhSp9OSVmeyK} 2 \mathrm{yt} 8 \mathrm{hdoo3Qze3O} 0 \mathrm{Y} 67 \mathrm{qaY}$ |
| Unit 3 | https://www.youtube.com/watch?v=6tQTRlbkbc8 <br> https://www.youtube.com/watch?v=McT-UsFx1Es <br> https://www.youtube.com/watch? $\mathrm{v}=1 \mathrm{TNtFqiFQo}$ <br> https://www.youtube.com/watch?v=X6kp2o3mGtA <br> https://www.youtube.com/watch?v=btLWNJdHzSQ <br> https://www.youtube.com/watch?v=jiEaKYIOATY <br> https://www.youtube.com/watch?v=r61DwJZmfGA |


|  | https://www.youtube.com/watch?v=Jk9xMY4mPH8 <br> https://www.youtube.com/watch?v=fqq_UR4zhfI <br> https://www.youtube.com/watch?v=G0V yp0jz5c <br> https://www.youtube.com/watch?v=9-tir2V3vYY <br> https://www.youtube.com/watch?v=jGwA4hknYp4 |
| :---: | :---: |
| Unit 4 | https://www.youtube.com/watch?v=3BbrC9JcjOU <br> https://www.youtube.com/watch?v=-DduB46CoZY <br> https://www.youtube.com/watch?v=VvKAuFBJLs0 <br> https://www.youtube.com/watch?v=4rc3w1sGoNU <br> https://www.youtube.com/watch?v=X6kp2o3mGtA\&t=1003s <br> https://www.youtube.com/watch?v=wtY5fx6VMGQ\&t=1151s <br> https://www.youtube.com/watch?v=-I3HUeHilYs\&t=1933s <br> https://www.youtube.com/watch?v=kfv9h3c46CI <br> https://www.youtube.com/watch?v=9 m36W3cK74 <br> https://www.youtube.com/watch?v=HQM7XMd5QQo <br> - https://www.GovernmentAdda.com |
| Unit 5 | https://www.GovernmentAdda.com |

## B.TECH FIRST YEAR

| Course Code | AAS0101C | L $\quad$ T | P | Credit |
| :--- | :--- | :--- | :--- | :--- |
| Course Title | Engineering Physics | 3 | 1 | 0 |
| Course objective: | To provide the knowledge of Relativistic Mechanics and <br> their uses to engineering applications. |  |  |  |
| 1 | To provide the knowledge of Quantum Mechanics and to <br> explore possible engineering utilization. |  |  |  |
| 2 | To provide the knowledge of interference and diffraction. |  |  |  |
| 3 | To provide the basic concept of Electromagnetics. |  |  |  |
| 4 | To provide the knowledge of Dielectric properties of <br> material and to explore possible engineering applications. |  |  |  |
| 5 |  |  |  |  |

Pre-requisites: Newton's laws of motions, scalar and vectors, electricity and magnetism, basic laws of optics.

## Course Contents / Syllabus

| UNIT-I | Relativistic Mechanics | $\mathbf{8}$ hours |
| :--- | :--- | :--- |

Frame of reference, Inertial \& non-inertial frames, Galilean transformations, Michelson-Morley experiment, Postulates of special theory of relativity, Lorentz transformations, Length contraction, Time dilation, Velocity addition theorem, Variation of mass with velocity, Einstein's mass energy relation, Relativistic relation between energy and momentum, Massless particle.

Some engineering applications(qualitative): Global positioning system (GPS), Application to Satellites.

| UNIT-II | Quantum Mechanics | 8 hours |
| :--- | :--- | :--- |
| Introduction to wave-particle duality, de Broglie matter waves, Phase and group velocities, |  |  |
| Heisenberg's uncertainty principle and its applications, Wave function characteristics and significance, |  |  |
| Time-dependent and time- independent Schrödinger's wave equations, Particle in one-dimensional |  |  |
| rigid box, Theory of Quantum excitation of the Higgs field (Higgs Boson or GOD particle) |  |  |
| (qualitative). |  |  |


| UNIT-III | Wave Optics | 10 hours |
| :--- | :--- | :--- |

Coherent sources, Interference in uniform and wedge shaped thin films, Necessity of extended sources, Newton's Rings and its applications. Fraunhofer diffraction at single slit and at double slit, absent spectra, Diffraction grating, grating spectra, Rayleigh's criterion of resolution, Resolving power of grating, Optical filters.

6. V. Raghavan, Materials Science and Engineering ( Prentice Hall, India)
7. S.O. Pillai, Solid State Physics,5th Edn (New Age International )
8. R. Booker and E. Boysen , Nanotechnology (Wiley Publ.)
9. K.Rajagopal, Engineering Physics, 2nd Edn. (PHI Learning)
10. G. Aruldhas , Engineering Physics (PHI Learning)
11. S.D. Jain and G.S. Sahasrabudhe , Engineering Physics (Universities Press)
12. L. F. Bates, Modern Magnetism, (Cambridge Univ. Press)
13. F.T.S.Yu, X.-Y.Yang, Introduction to Optical Engineering (Cambridge Univ.Press)
14. G.Keiser, Optical Communications Essentials (Tata McGrawHill)

| B. TECH FIRST YEAR |  |  |  |
| :---: | :---: | :---: | :---: |
| Course Code | ACSE0101 | L T P | Credit |
| Course Title | Problem solving using Python | 300 | 3 |
| Course objective: |  |  |  |
| To | To impart knowledge of basic building blocks of Python programming |  |  |
| T | To provide skills to design algorithms for problem solving |  |  |
| T | To impart the knowledge of implementation and debugging of basic programs in Python |  |  |
| 4 To | To disseminate the knowledge of basic data structures |  |  |
| 5 $\begin{array}{l}\text { To p } \\ \text { hand }\end{array}$ | To provide the knowledge of file system concepts and its application in data handling |  |  |
| Pre-requisites:Students are expected to be able to open command prompt window or terminal window, edit a text file, download and install software, and understand basic programming concepts. |  |  |  |
| Course Contents / Syllabus |  |  |  |
| UNIT-I | Basics of python programming |  | 8 hours |
| Introduction: Introduction to computer system, algorithms, Ethics and IT policy in company, Feature of object-oriented programming, A Brief History of Python,Applications areas of python, The Programming Cycle for Python, Python IDE, Interacting with Python Programs. <br> Elements of Python:keywords and identifiers, variables, data types and type conversion, operators in python, expressions in python, strings. |  |  |  |
| UNIT-II | Decision Control Statements |  | 8 hours |
| Conditionals: Conditional statement in Python (if-else statement, its working and execution), |  |  |  |

Representation.
Loops: Purpose and working of loops, while loop, For Loop, Nested Loops,Break and Continue, pass statement.

| UNIT-III | Function and Modules | $\mathbf{8}$ hours |
| :--- | :--- | ---: |
| Introduction of Function, calling a function, Function arguments, built in function, scope rules, <br> Passing function to a function, recursion, Lambda functions <br> Modules and Packages: Importing Modules, writing own modules, Standard library modules, <br> dir( ) Function, Packages in Python |  |  |
| UNIT-IV | BasicData structures in Python | $\mathbf{8}$ hours |
| Strings: Basic operations, IndexingandSlicing of Strings, Comparing strings, Regular <br> expressions. |  |  |
| Python BasicData Structure: Sequence, Unpacking Sequences, Mutable <br> Lists,ListComprehension, Looping in lists, Tuples, Sets, Dictionaries | Sequences, |  |
| UNIT-V | File and Exception handling | $\mathbf{8}$ hours |

Files and Directories: Introduction to File Handling in Python, Reading and Writing files, Additional file methods, Working with Directories.

Exception Handling, Errors, Run Time Errors, Handling IO Exception, Try-except statement, Raise, Assert

Searching \&Sorting:Simple search \& Binary search,Selection Sort, Merge Sort

## Course outcome: At the end of course, the student will be able to

| CO 1 | Write simple python programs. | $\mathrm{K}_{2}, \mathrm{~K}_{3}$ |
| :---: | :--- | :--- |
| CO 2 | Develop python programs usingdecision control statements | $\mathrm{K}_{3}, \mathrm{~K}_{6}$ |
| CO 3 | Implement user defined functions and modules in python | $\mathrm{K}_{2}$ |
| CO 4 | Implement python data structures -lists, tuples, set, dictionaries | $\mathrm{K}_{3}$ |
| CO 5 | Perform input/output operations with files in python and implement <br> searching, sorting and merging algorithms | $\mathrm{K}_{3}, \mathrm{~K}_{4}$ |

## Text books

(1) Magnus Lie Hetland, "Beginning Python-From Novice to Professional"-Third Edition,

Apress
(2) Python Programming using Problem solving approach by ReemaThareja OXFORD

Higher education
(3) Kenneth A. Lambert, -Fundamentals of Python: First Programs, CENGAGE Learning, 2012.

## Reference Books

(1) John V Guttag, —Introduction to Computation and Programming Using Python‘‘, Revised and expanded Edition, MIT Press , 2013
(2) Charles Dierbach, -Introduction to Computer Science using Python: A Computational Problem Solving Focus, Wiley India Edition, 2013.
(3) Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O‘Reilly Publishers, 2016
(4) Robert Sedgewick, Kevin Wayne, Robert Dondero: Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd.,2016.
(5) Timothy A. Budd, -Exploring Pythonll, Mc-Graw Hill Education (India) Private Ltd.,2015.
(6) Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python - Revised and updated for Python 3.2, Network Theory Ltd., 2011.

## E-book and E-Content

(1) https://www.pdfdrive.com/hacking-hacking-practical-guide-for-beginners-hacking-with-pythn-e182434771.html
(2) https://www.pdfdrive.com/python-programming-python-programming-for-beginners-python-programming-for-intermediates-e180663309.html
(3)https://www.pdfdrive.com/python-algorithms-mastering-basic-algorithms-in-the-python-language-e $175246184 . \mathrm{html}$
(4) https://www.pdfdrive.com/python-algorithms-mastering-basic-algorithms-in-the-python-language-e $160968277 . \mathrm{html}$
(5) https://docs.python.org/3/library/index.html
(6) https://www.w3schools.com/python/
(7) https://www.py4e.com/materials

| Reference Links |
| :--- |
| Unit-1 https://nptel.ac.in/courses/106/106/106106182/ |
| Unit-2 https://nptel.ac.in/courses/106/106/106106212/ |
| Unit-3 https://nptel.ac.in/courses/106/106/106106145/ |
| Unit-4- https://nptel.ac.in/courses/106/106/106106145/ |
| Unit-5- https://nptel.ac.in/courses/106/106/106106145/ |
| [Unit-2]- https://www.youtube.com/watch?v=PqFKRqpHrjw |
| [Unit - 3]- https://www.youtube.com/watch?v=m9n2f91htrw |
| https://www.youtube.com/watch?v=oSPMmeaiQ68 |
| [Unit 4]- https://www.youtube.com/watch?v=ixEeeNjjOJ0\&t=4s |
| [Unit-5]- https://www.youtube.com/watch?v=NMTEjQ8-AJM |
| After Completing Course Student may get certification in python using following links: |
| Link for Certification: |
| https://swayam.gov.in/nd1 noc19 cs41/preview |
| https://aktu.ict.iitk.ac.in/courses/python-programming-a-practical-approach/ |




| B. TECH FIRST YEAR |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course | Code | AAS0151C | L T P | Credit |
| Course | Title | Engineering Physics Lab | $0 \quad 02$ | 1 |
| Suggested list of Experiment |  |  |  |  |
| Sr. No. | Name of Experiment <br> (Minimum Ten experiments should be performed) |  |  |  |
| 1 | To determine the wavelength of monochromatic light by Newton's ring. |  |  |  |
| 2 | To determine the focal length of two lenses by nodal slide and to verify the formula for the focal length of combination of two lenses. |  |  |  |
| 3 | To determine the specific rotation of cane sugar solution using Polarimeter. |  |  |  |
| 4 | To determine the wavelength of spectral lines using plane transmission Grating. |  |  |  |
| 5 | To determine the specific resistance of a given wire using Carey Foster's bridge. |  |  |  |
| 6 | To study the variation of magnetic field along the axis of current carrying - Circular coil and then to estimate the radius of the coil. |  |  |  |
| 7 | To verify Stefan's Law by electrical method. |  |  |  |
| 8 | To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of given semiconductor material using hall effect setup. |  |  |  |
| 9 | To determine the energy band gap of a given semiconductor material. |  |  |  |
| 10 | To determine the coefficient of viscosity of a liquid. |  |  |  |
| 11 | Calibration of a voltmeter using potentiometer. |  |  |  |
| 12 | Calibration of a ammeter using potentiometer. |  |  |  |
| 13 | To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. |  |  |  |
| 14 | To determine the magnetic susceptibility of a ferromagnetic salt $\left(\mathrm{FeCl}_{3}\right)$ by using Quincke's tube method. |  |  |  |
| 15 | To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. |  |  |  |
| 16 | To determine the angle of divergence of laser beam using He-Ne Laser. |  |  |  |
| 17 | To determine the wavelength of laser using diffraction grating. |  |  |  |
| 18 | To determine the numerical aperture of optical fiber. |  |  |  |
| Lab Course Outcome: After completion of this course students willbeable to: |  |  |  |  |
| CO 1 | Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. |  |  |  |
| CO 2 | Understand energy band gap and resistivity. |  |  |  |
| CO 3 | Develop the measurement techniques of magnetism. |  |  |  |
| CO 4 | Analyze the flow of liquids. |  |  |  |

## Link:

| Unit 1 | https://www.youtube.com/watch?v=lzBKIY4f1XA\&list=PL10WTjZXSIIHKMnU4UCxpPsHyAf_n1O6\&index=11 |
| :---: | :---: |
| Unit 2 | http://nptel.ac.in/ , http://www.mit.edu/ |
| Unit 3 | https://www.youtube.com/watch?v=bWTxf5dSUBE ,http://ocw.mit.edu/ http://nptel.ac.in/ |
| Unit 4 | https://www.youtube.com/watch?v=6vyYRnLvnqI |
| Unit 5 | https://www.youtube.com/watch?v=0GD-18Jqnro, https://www.youtube.com/watch?v=dQhhcgn8YZo |


| B.TECH FIRST YEAR |  |  |  |
| :---: | :--- | :--- | :---: |
| Lab Code | ACSE0151 | $\mathbf{L}$ T P | Credit |
| Lab Title | Problem Solving using Python Lab | $\mathbf{0}$ 0 2 | $\mathbf{1}$ |
| Course outcome: At the end of course, the student will be able to |  |  |  |
| CO 1 | Write simple python programs. | $\mathrm{K}_{2}, \mathrm{~K}_{3}$ |  |
| CO 2 | Implement python programs usingdecision control statements | $\mathrm{K}_{3}, \mathrm{~K}_{6}$ |  |
| CO 3 | Writing python programs using user defined functions and modules | $\mathrm{K}_{2}$ |  |
| CO 4 | Implement programs using python data structures -lists, tuples, set, <br> dictionaries | $\mathrm{K}_{3}$ |  |
| CO 5 | Write programs to perform input/output operations on files | $\mathrm{K}_{3}, \mathrm{~K}_{4}$ |  |

## List of Experiment:

| List of Fundamental Programs |  |  |
| :---: | :--- | :--- |
| S.N. | Program Title | Catagory |
| 1 | Python Program to print "Hello Python" | Basic |
| 2 | Python Program to read and print values of variables of different data <br> types. | Basic |
| 3 | Python Program to perform arithmetic operations on two integer <br> numbers | Basic |
| 4 | Python Program to Swap two numbers | Basic |
| 5 | Python Program to convert degree Fahrenheit into degree Celsius | Operators |
| 6 | Python Program to demonstrate the use of relational operators. | Operators |
| 7 | Python Program to understand the working of bitwise and logical <br> operators. | Operators |
| 8 | Python Program to calculate roots of a quadratic equation. | Conditional |
| 9 | Python Program to check whether a year is leap year or not. | Conditional |
| 10 | Python Program to find smallest number among three numbers. | Conditional |
| 11 | Python Program to make a simple calculator. | Conditional |
| 12 | Python Program to find the factorial of an integer number. | Loop |
| 13 | Python Program to find the reverse of an integer number. | Loop |
| 14 | Python Program to find and print all prime numbers in a list. | Loop |
| 15 | Python Program to Find the Sum of 'n' Natural Numbers | Loop |
| 16 | Python Program to print sum of series: - 1/2 + 2/3+ 3/4+ ..... $\mathrm{n} /(\mathrm{n}+1)$ | Loop |


| 17 | Python Program to print pattern using nested loop | Loop |
| :---: | :---: | :---: |
| 18 | Python Program to Display the multiplication Table of an Integer | Loop |
| 19 | Python Program to Print the Fibonacci sequence | Loop |
| 20 | Python Program to Check Armstrong Number | Loop |
| 21 | Python Program to Find Armstrong Number in an Interval | Loop |
| 22 | Python Program to check Using function whether a passed string is palindrome or not | Function |
| 23 | Python Program using function that takes a number as a parameter, check whether the number is prime or not. | Function |
| 24 | PythonProgram using function that computes gcd of two given numbers. | Function |
| 25 | Python Program to Find LCM of two or more given numbers. | Function |
| 26 | Python Program to Convert Decimal to Binary, Octal and Hexadecimal | Function |
| 27 | Python Program To Find ASCII value of a character | Basic |
| 28 | Python Program to Display Calendar | Loop |
| 29 | Python Program to Add Two Matrices | Loop |
| 30 | Python Program to Multiply Two Matrices | Loop |
| 31 | Python Program to Transpose a Matrix | Loop |
| 32 | Python Program to Sort Words in Alphabetic Order | Sorting |
| 33 | Python Program to Display Fibonacci Sequence Using Recursion | Recursion |
| 34 | Python Program to Find Factorial of Number Using Recursion | Recursion |
| 35 | Python Program that implements different string methods. | String |
| 36 | Python Program that validates given mobile number. Number should start with 7,8 or 9 followed by 9 digits. | String |
| 37 | Python Program to implement various methods of a list. | List |
| 38 | Python Program that has a nested list to store toppers details. Edit the details and reprint them. | List |
| 39 | Python Program to swap two values using tuple assignment. | Tuple |
| 40 | Python Program that has a set of words in English language and their corresponding Hindi words. Define dictionary that has a list of words in Hindi language and their corresponding Hindi Sanskrit. Take all words from English language and display their meaning in both languages. | Dictionary |
| 41 | Python Program that inverts a dictionary. | Dictionary |
| 42 | Python Program that reads data from a file and calculates percentage of white spaces, lines, tabs, vowels and consonants in that file. | File |
| 43 | Python Program that fetches data from a given url and write it in a file. | File |
| 44 | Python Program to understand the concept of Exception Handling | Exception <br> Handling |
| 45 | Python Program to implement linear and binary search | Searching |
| 46 | Python Program to sort a set of given numbers using Bubble sort | Sorting |
| S.No. | Word Problem Experiments |  |
| 1. | String Rotation |  |


|  | Problem Description <br> Rotate a given String in the specified direction by specified magnitude. <br> After each rotation make a note of the first character of the rotated String, after all rotation are performed the accumulated first character as noted previously will form another string, say FIRSTCHARSTRING. <br> Check If FIRSTCHARSTRING is an Anagram of any substring of the Original string. If yes print "YES" otherwise "NO". Input <br> The first line contains the original string s. The second line contains a single integer q . The ith of the next $q$ lines contains character $\mathrm{d}[\mathrm{i}]$ denoting direction and integer $\mathrm{r}[\mathrm{i}]$ denoting the magnitude. <br> Constraints <br> $1<=$ Length of original string $<=30$ <br> $1<=\mathrm{q}<=10$ <br> Output <br> YES or NO <br> Explanation <br> Example 1 <br> Input <br> carrace <br> 3 <br> L 2 <br> R 2 <br> L 3 <br> Output <br> NO <br> Explanation <br> After applying all the rotations, the FIRSTCHARSTRING string will be "rcr" which is not anagram of any sub string of original string "carrace". |
| :---: | :---: |
| 2. | Jurassic Park <br> Problem Description <br> Smilodon is a ferocious animal which used to live during the Pleistocene epoch (2.5 mya- 10,000 years ago). Scientists successfully created few smilodons in an experimental DNA research. A park is established and those smilodons are kept in a cage for visitors. <br> This park consists of Grasslands(G), Mountains(M) and Waterbodies(W) and it has three gates (situated in grasslands only). Below is a sample layout. |


| W | $M$ | $G$ | $G$ | $G$ | $G$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $M$ | $G$ | $W$ | $G$ | $M$ | $M$ |
| G | $G$ | $G$ | $G$ | $G$ | $G$ |
| $W$ | $G$ | $G$ | $M$ | $W$ | $G$ |

Before opening the park, club authority decides to calculate Safety index of the park. The procedure of the calculation is described below. Please help them to calculate.
Safety Index calculation
Assume a person stands on grassland(x) and a Smilodon escapes from the cage situated on grassland(y). If the person can escape from any of those three gates before the Smilodon able to catch him, then the grassland $(x)$ is called safe else it is unsafe. A person and a Smilodon both take 1 second to move from one area to another adjacent area(top, bottom, left or right) but a person can move only over grasslands though Smilodon can move over grasslands and mountains.
If any grassland is unreachable for Smilodon(maybe it is unreachable for any person also), to increase safe index value Club Authority use to mark those grasslands as safe land. Explained below


For the above layout, there is only one gate at $(4,6)$
Y is the position of Smilodon's cage
X is not safe area
Z is a safe area as is it not possible for smilodon to reach z
Safety index=(total grassland areas which are safe*100)/total grassland area
Constraints
i. $\quad 3<=\mathrm{R}, \mathrm{C}<=10^{\wedge} 3$
ii. Gates are situated on grasslands only and at the edge of the park
iii. The cage is also situated in grassland only
iv. The position of the cage and the position of three gates are different

## Input Format

The first line of the input contains two space-separated integers R and C , denoting the size of the park ( $\mathrm{R} * \mathrm{C}$ )
The second line contains eight space-separated integers where
First two integers represent the position of the first gate
3rd and 4th integers represent the position of second gate
5th and 6th integers represent the position of third gate respectively
The last two integers represent the position of the cage

|  | Next R lines, each contains space separated C number of characters. These R lines represent the park layout. <br> Output <br> Safety Index accurate up to two decimal places using Half-up Rounding method <br> Explanation <br> Example 1 <br> Input <br> 44 <br> 11213113 <br> G GGG <br> G W W M <br> G G W W <br> M G M M <br> Output <br> 75.00 |
| :---: | :---: |
| 3. | Bank Compare <br> Problem Description <br> There are two banks; Bank A and Bank B. Their interest rates vary. You have received offers from both bank in terms of annual rate of interest, tenure and variations of rate of interest over the entire tenure. <br> You have to choose the offer which costs you least interest and reject the other. <br> Do the computation and make a wise choice. <br> The loan repayment happens at a monthly frequency and Equated Monthly Installment (EMI) is calculated using the formula given below : <br> EMI $=$ loanAmount $*$ monthlyInterestRate/( $1-1 /(1$ <br> + monthlyInterestRate $)^{\wedge}($ numberOfYears * 12)) <br> Constraints $\begin{array}{ll} \text { i. } & 1<=\mathrm{P}<=1000000 \\ \text { ii. } & 1<=\mathrm{T}<=50 \\ \text { iii. } & 1<=\mathrm{N} 1<=30 \\ \text { iv. } & 1<=\mathrm{N} 2<=30 \end{array}$ <br> Input Format <br> First line : P - principal (Loan Amount) <br> Second line : T - Total Tenure (in years). <br> Third Line : N1 is number of slabs of interest rates for a given period by Bank A. First slab starts from first year and second slab starts from end of first slab and so on. <br> Next N1 line will contain the interest rate and their period. <br> After N1 lines we will receive N2 viz. the number of slabs offered by second bank. <br> Next N2 lines are number of slabs of interest rates for a given period by Bank B. First slab starts from first year and second slab starts from end of first slab and so on. <br> The period and rate will be delimited by single white space. <br> Output |


|  | Your decision - either Bank A or Bank B. <br> Explanation <br> Example 1 <br> Input <br> 10000 <br> 20 <br> 3 |
| :--- | :--- |
| 59.5 |  |
| 10 9.6 |  |
| 58.5 |  |
| 3 |  |
| 10 | 4. 6.9 <br> 58.5 <br> 57.9 <br> Output <br> Bank B <br> Cross Words <br> Problem Description <br> A crossword puzzle is a square grid with black and blank squares, containing clue <br> numbers (according to a set of rules) on some of the squares. The puzzle is solved by <br> obtaining the solutions to a set of clues corresponding to the clue numbers. <br> The solved puzzle has one letter in each of the blank square, which represent a <br> sequence of letters (consisting of one or more words in English or occasionally other <br> languages) running along the rows (called "Across", or "A") or along the columns <br> (called "Down" or "D"). Each numbered square is the beginning of an Across solution <br> or a Down solution. Some of the across and down solutions will intersect at a blank <br> square, and if the solutions are consistent, both of them will have the same letter at the <br> intersecting square. <br> In this problem, you will be given the specifications of the grid, and the solutions in <br> some random order. The problem is to number the grid appropriately, and associate <br> the answers consistently with the clue numbers on the grid, both as Across solutions <br> and as Down solutions, so that the intersecting blank squares have the same letter in <br> both solutions. <br> Rules for Clue Numbering <br> The clue numbers are given sequentially going row wise (Row 1 first, and then row2 <br> and so on) <br> Only blank squares are given a clue number <br> A blank square is given a clue number if either of the following conditions exist (only <br> one number is given even if both the conditions are satisfied) <br> It has a blank square to its right, and it has no blank square to its left (it has a black <br> square to its left, or it is in the first column). This is the beginning of an Across |



$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { boundary (top or left boundary in the map) from which it is feasible to reach the } \\ \text { destination. } \\ \text { Constraints } \\ \text { i. }\end{array} \\ \begin{array}{l}\text { Input Format } \\ \text { The first line of the input is a positive integer N, which is the number of squares in } \\ \text { each side of the grid. } \\ \text { The next N lines have a N strings of characters representing the contents of the map } \\ \text { for that corresponding row. Each string may be F, representing the Final destination, } \\ \text { D, representing a drop square, or a set of up to three of the possible four directions } \\ \text { (N,E,S,W) in some random order. These represent the directions in which the } \\ \text { contestant can maneuver the skateboard when in that square. } \\ \text { Output } \\ \text { The output is one line with the number of North or West border squares from which } \\ \text { there is a safe way to maneuver the skateboard to the final destination. } \\ \text { Explanation } \\ \text { Example 1 } \\ \text { Input } \\ 6 \\ \text { ES,ES,SE,ES,ES,S } \\ \text { SE,ES,SE,ES,ES,S } \\ \text { ES,ES,SE,ES,SE,S } \\ \text { ES,SE,ES,SE,E,D } \\ \text { SE,ES,D,WSE,NES,NS } \\ \text { E,E,NE,E,E,F } \\ \text { Output } \\ 9\end{array} \\ \hline \text { 6. } \\ \text { Chakravyuha } \\ \text { Problem Description } \\ \text { During the battle of Mahabharat, when Arjuna was far away in the battlefield, Guru } \\ \text { Drona made a Chakravyuha formation of the Kaurava army to capture } \\ \text { YudhisthirMaharaj. Abhimanyu, young son of Arjuna was the only one amongst the } \\ \text { remaining Pandava army who knew how to crack the Chakravyuha. He took it upon } \\ \text { himself to take the battle to the enemies. } \\ \text { Abhimanyu knew how to get power points when cracking the Chakravyuha. So great } \\ \text { was his prowess that rest of the Pandava army could not keep pace with his advances. } \\ \text { Worried at the rest of the army falling behind, YudhisthirMaharaj needs your help to } \\ \text { track of Abhimanyu's advances. Write a program that tracks how many power points } \\ \text { Abhimanyu has collected and also uncover his trail } \\ \text { A Chakravyuha is a wheel-like formation. Pictorially it is depicted as below }\end{array}\right\}$

|  | Fig 1. Chakravyuha <br> A Chakravyuha has a very well-defined co-ordinate system. Each point on the coordinate system is manned by a certain unit of the army. The Commander-In-Chief is always located at the centre of the army to better co-ordinate his forces. The only way to crack the Chakravyuha is to defeat the units in sequential order. <br> A Sequential order of units differs structurally based on the radius of the Chakra. The radius can be thought of as length or breadth of the matrix depicted above. The |
| :---: | :---: |
|  | 1 2 3 4 5 <br> 16 17 18 19 6 <br> 15 24 25 20 7 <br> 14 23 22 21 8 <br> 13 12 11 10 9 <br> Fig 2. Army unit placements in Chakravyuha of size 5 <br> The entry point of the Chakravyuha is always at the $(0,0)$ co-ordinate of the matrix above. This is where the 1 st army unit guards. From $(0,0)$ i.e. 1 st unit Abhimanyu has to march towards the center at $(2,2)$ where the 25 th i.e. the last of the enemy army unit guards. Remember that he has to proceed by destroying the units in sequential fashion. After destroying the first unit, Abhimanyu gets a power point. Thereafter, he gets one after destroying army units which are multiples of 11 . You should also be a in a position to tell YudhisthirMaharaj the location at which Abhimanyu collected his power points. <br> Input Format: <br> First line of input will be length as well as breadth of the army units, say N <br> Output Format: <br> - Print NxN matrix depicting the placement of army units, with unit numbers delimited by ( $\backslash t$ ) Tab character <br> - Print Total power points collected <br> - Print coordinates of power points collected in sequential fashion (one |



|  | Output Format: <br> Minimum Accuracy rate required for one mark question is $80 \%$ <br> Minimum Accuracy rate required for Two mark question is $83.33 \%$ <br> Minimum Accuracy rate required for Three mark question is $90 \%$ <br> Note: - If the mark required to pass the exam can be achieved by attempting without attempting any particular type of question then show message similar to, One mark question need not be attempted, so no minimum accuracy rate applicable <br> Sample Input and Output |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | S.No | Input | Output | Explanation |
|  | 1 | $\begin{array}{\|l\|} \hline 20 \\ 30 \\ 30 \\ 120 \\ \hline \end{array}$ | One mark questions need not be attempted, so no minimum accuracy rate applicable. Minimum Accuracy rate required for Two mark question is $58.33 \%$ Minimum Accuracy rate required for Three mark question is $72.23 \%$ | If one got full marks in two marks question and three marks question then total accuracy can be 0 in one mark question <br> In same way it will be done for two marks and three marks question |
|  | 2 | 20 30 30 170 | Minimum Accuracy rate required for one mark question is $100 \%$ Minimum Accuracy rate required for Two mark question is $100 \%$ Minimum Accuracy rate required for Three mark question is $100 \%$ | If one got full marks in two marks question and three marks question then total accuracy should be $100 \%$ in one mark question to pass the exam. <br> In same way it will be done for two marks and three marks question |
| 8. | Calcula <br> Problem <br> Calcula <br> Compan <br> \& Anni <br> The Em <br> Increme <br> (i.e.Apr <br> Year, th <br> (Financ <br> Rate of <br> Rate of | te Salar <br> mescr <br> e the Fi <br> y Pvt. L <br> versary <br> ployee <br> nt. The <br> il) are <br> ey get T <br> al Year <br> Interest <br> Interest | $y$ and PF <br> ption <br> nal Salary \& Final Accumulated PF <br> td. The Company gives two Increme ncrement) to an Employee in a Parti must have Completed 1 Year to be Employee who are joining in the onsidered as the Luckiest Employee wo Increments <br> Increment \& Anniversary Increment for the Financial Year Increment $=1$ for the Anniversary Increment $=12 \%$ | of an Employee working in ABC nts (i.e. Financial Year Increment ular Year. <br> Eligible for the Financial Year month of Financial Year Change s, because after completion of 1 1\%. |


iii. A team cannot play matches on consecutive days
iv. A team cannot play more than two back to back Home or Away matches
v. Number of matches in a day has following constraints
a. The match pattern that needs to be followed is -

- Day 1 has two matches and Day 2 has one match,
- Day 3 has two matches and Day 4 has one match and so on
b. There can never be 3 or more matches in a day
vi. Gap between two successive matches of a team cannot exceed floor( $\mathrm{N} / 2$ ) days where floor is the mathematical function floor()
vii. Derby Matches (any one)
a. At least half of the derby matches should be on weekend
b. At least half of the weekend matches should be derby matches

Your task is to generate a schedule abiding to above rules.
Input Format:
First line contains number of teams (N).
Next line contains state ID of teams, delimited by space

## Output Format:

Match format: Ta-vs-Tb
where Ta is the home team with id a and Tb is the away team with id b .
For each day print the match(es) in following format:-
Two matches:- "\#D Ta-vs-Tb Tm-vs-Tn"
One match:- "\#D Tx-vs-Ty"
where D is the day id and $[\mathrm{a}, \mathrm{b}, \mathrm{m}, \mathrm{n}, \mathrm{x}, \mathrm{y}]$ are team ids.
Constraints:
i. $\quad 8<=\mathrm{N}<=100$

Note :

- Team ids are unique and have value between 1 to N
- Day id starts with 1
- Every 6th and 7th day are weekends
- Derby is a football match between two teams from the same state

Sample Input and Output

| S.No. | Input | Output |
| :--- | :--- | :--- |
| 1 | 8 | \#1 T1-vs-T6 T3-vs-T5 |
|  | 12543166 | \#2 T7-vs-T4 <br> \#3....and so on |

Note: - There can be multiple correct answers for the same test cases. For better understanding of test case refer this PDF. This PDF contains one of the correct answer

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{10}{|l|}{\begin{tabular}{l}
for a test case. \\
Explanation: \\
There are 8 teams with following information: -
\end{tabular}} \\
\hline \& \& Team ID \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \\
\hline \& \& State ID \& 1 \& 2 \& 5 \& 4 \& 3 \& \& 6 \& 6 \\
\hline \multirow[t]{3}{*}{10.} \& \multicolumn{10}{|l|}{\begin{tabular}{l}
Longest Possible Route \\
Problem Description \\
Given an MxN matrix, with a few hurdles arbitrarily placed, calculate the cost of longest possible route from point A to point B within the matrix. \\
Input Format: \\
i. First line contains 2 numbers delimited by whitespace where, first number M is number of rows and second number N is number of columns \\
ii. Second line contains number of hurdles H followed by H lines, each line will contain one hurdle point in the matrix. \\
iii. Next line will contain point A, starting point in the matrix. \\
iv. Next line will contain point B, stop point in the matrix. \\
Output Format: \\
Output should display the length of the longest route from point A to point B in the matrix. \\
Constraints: \\
i. The cost from one position to another will be 1 unit. \\
ii. A location once visited in a particular path cannot be visited again. \\
iii. A route will only consider adjacent hops. The route cannot consist of diagonal hops. \\
iv. The position with a hurdle cannot be visited. \\
v. The values MxN signifies that the matrix consists of rows ranging from 0 to \(\mathrm{M}-1\) and columns ranging from 0 to \(\mathrm{N}-1\). \\
vi. If the destination is not reachable or source/ destination overlap with hurdles, print cost as -1 . \\
Sample Input and Output
\end{tabular}} \\
\hline \& S. No. \& Input \& Outpu
\[
\mathbf{t}
\] \& \& \& \& \& \& \& \\
\hline \& \begin{tabular}{|l|l|}
1 \& \\
\& \\
\& \\
\& \\
\& \\
\end{tabular} \& \(\begin{array}{ll}3 \& 10 \\ 3 \& \\ 1 \& 2 \\ 1 \& 5 \\ 1 \& 8 \\ 0 \& 0 \\ 1 \& 7\end{array}\) \& 24 \& He
\((1,2\)
poi

311
3
12 \& \& \& \& \& \& <br>
\hline
\end{tabular}



## Explanation for sample 1:

|  | Here total numbers are 3 and total modifications allowed are 5. So we modified A[2], which is -3 and increased it by 10 (as 5 modifications are allowed). Now final sum will be $\begin{aligned} & (1 *-2)+(2 * 3)+(7 *-5) \\ & -2+6-35 \\ & -31 \end{aligned}$ <br> -31 is final answer. <br> Explanation for sample 2: <br> Here total numbers are 5 and total modifications allowed are 3 . So we modified $\mathrm{A}[1]$, which is 3 and decreased it by 6 (as 3 modifications are allowed). <br> Now final sum will be $\begin{aligned} & (2 * 3)+(-3 * 4)+(4 * 2)+(5 * 3)+(4 * 2) \\ & 6-12+8+15+8 \\ & 25 \\ & 25 \text { is final answer. } \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 12. | Consecutive Prime Sum <br> Problem Description <br> Some prime numbers can be expressed as a sum of other consecutive prime numbers. For example, $5=2+3,17=2+3+5+7,41=2+3+5+7+11+13$. Your task is to find out how many prime numbers which satisfy this property are present in the range 3 to N subject to a constraint that summation should always start with number 2. Write code to find out the number of prime numbers that satisfy the above-mentioned property in a given range. |  |  |  |
|  | S. <br> No. <br> 1 | Input <br> 20 | $\begin{array}{\|l} \hline \begin{array}{l} \text { Outpu } \\ \text { t } \end{array} \\ \hline 2 \end{array}$ | Comment (Below 20, there are 2 such members: 5 and 17) $\begin{aligned} & 5=2+3 \\ & 17\end{aligned}=2+3+5+7$ |
|  | 2 | 15 | 1 |  |
|  | Input Form <br> First line con <br> Output Form <br> Print the tota <br> Constraints <br> $2<\mathrm{N}<=12,000$ | ins a nu t: umber $000,000$ | mber N <br> f all such | prime numbers which are less than or equal to N . |
| 13. | kth largest f Problem De A positive in divided by d | tor of N iption <br> ger $d$ is <br> he rema | said to der obt | a factor of another positive integer N if when N is ned is zero. For example, for number 12, there are 6 |


|  | factors $1,2,3,4,6,12$. Every positive integer k has at least two factors, 1 and the number k itself.Given two positive integers N and k , write a program to print the kth largest factor of N . <br> Input Format: <br> The input is a comma-separated list of positive integer pairs ( $\mathrm{N}, \mathrm{k}$ ) <br> Output Format: <br> The kth highest factor of N . If N does not have k factors, the output should be 1 . <br> Constraints: <br> $1<\mathrm{N}<10000000000.1<\mathrm{k}<600$. You can assume that N will have no prime factors which are larger than 13 . <br> Example 1 <br> Input: <br> 12,3 <br> Output: <br> 4 <br> Explanation: <br> N is $12, \mathrm{k}$ is 3 . The factors of 12 are $(1,2,3,4,6,12)$. The highest factor is 12 and the third largest factor is 4 . The output must be 4 |
| :---: | :---: |
| 14. | Coins Distribution Question (or Coins Required Question) <br> Problem Description <br> Find the minimum number of coins required to form any value between 1 to N , both inclusive. Cumulative value of coins should not exceed N. Coin denominations are 1 Rupee, 2 Rupee and 5 Rupee. <br> Let's understand the problem using the following example. Consider the value of N is 13, then the minimum number of coins required to formulate any value between 1 and 13 , is 6 . One 5 Rupee, three 2 Rupee and two 1 Rupee coins are required to realize any value between 1 and 13 . Hence this is the answer. <br> However, if one takes two 5 Rupee coins, one 2 rupee coins and two 1 rupee coins, then to all values between 1 and 13 are achieved. But since the cumulative value of all coins equals 14 , i.e., exceeds 13 , this is not the answer. <br> Input Format <br> A single integer value <br> Output Format <br> Four Space separated Integer Values <br> 1st - Total Number of coins <br> 2nd - number of 5 Rupee coins. <br> 3rd - number of 2 Rupee coins. <br> 4th - number of 1 Rupee coins. <br> Constraints <br> $0<\mathrm{n}<1000$ |


|  | Sample Input: 13 Sample Output: 6132 |
| :---: | :---: |
| S. NO. | Debugging Experiments |
| 1. | Write error/output in the following code. ```# abc.py deffunc(n): return n + 10 func('Hello')``` |
| 2. | Write the output of the following code. <br> if not a or b: <br> print 1 <br> elif not a or not b and c : <br> print 2 <br> elif not a or b or not b and a : <br> print 3 <br> else: <br> print 4 |
| 3. | Write error/output in the following code. ```count = 1 defdoThis(): global count for i in (1, 2, 3): count += 1 doThis() print count``` |
| 4. | Write the output of the following code. $\begin{aligned} & \text { check1 }=[\text { ['Learn', 'Quiz', 'Practice', 'Contribute'] } \\ & \text { check2 }=\text { check1 } \end{aligned}$ |


|  | ```check3 = check1[:] check2[0] = 'Code' check3[1] = 'Mcq' count \(=0\) for c in (check1, check2, check3): if \(c[0]==\) 'Code': count \(+=1\) if \(c[1]==\) 'Mcq': count \(+=10\) print count``` |
| :---: | :---: |
| 5. | What is the output of the following program? $\begin{aligned} & \mathrm{D}=\operatorname{dict}() \\ & \text { for } \mathrm{x} \text { in enumerate(range(2)): } \\ & \mathrm{D}[\mathrm{x}[0]]=\mathrm{x}[1] \\ & \mathrm{D}[\mathrm{x}[1]+7]=\mathrm{x}[0] \\ & \operatorname{print}(\mathrm{D}) \end{aligned}$ |
| 6. | What is the output/error in the following program? $\begin{aligned} & \mathrm{D}=\left\{1: 1,2: \text { '2', '1' }^{\prime}: 1,{ }^{\prime} 2 \text { ' }: 3\right\} \\ & \mathrm{D}\left['^{\prime}\right]=2 \\ & \operatorname{print}(\mathrm{D}[\mathrm{D}[\mathrm{D}[\operatorname{str}(\mathrm{D}[1])]]]) \end{aligned}$ |
| 7. | What is the output/error in the following program? $\begin{aligned} & \mathrm{D}=\{1:\{\mathrm{A} \text { ' : }\{1: \text { "A" }\}, 2: \text { "B" }\}, 3: " \mathrm{C} ", ~ ' \mathrm{~B} ': ~ " \mathrm{D} ", ~ " \mathrm{D} ": ~ ' E '\} \\ & \operatorname{print(D[\mathrm {D}[\mathrm {D}[1][2]]],\text {end}=\text {"")}} \\ & \operatorname{print(D[D[1]["A"][2]])~} \end{aligned}$ |
| 8. | What is the output/error in the following program? ```D = dict() for i in range (3): for j in range(2): D[i] = j print(D)``` |
| 9. | What is the output/error in the following program? $\mathrm{x}=[\text { 'ab', 'cd'] }$ <br> for i in x : |


| $\mathbf{1 0 .}$ | x.append(i.upper()) <br> $\operatorname{print}(\mathrm{x})$ |
| ---: | :--- |
|  | What is the output/error in the following program? |
| i=1 |  |
| while True: |  |
| if $\% 3==0:$ |  |
| break |  |
| $\operatorname{print(i)}$ |  |
| i+ +1 |  |


| Course Code | AASL0151 | L T P | Credit |
| :--- | :--- | :--- | :---: |
| Course Title | Professional Communication Lab | $\mathbf{0}$ 0 2 | $\mathbf{1}$ |
| Suggested list of Experiment |  |  |  |
| Sr. <br> No. | Name of Experiment |  |  |
| 1 | Extempore speech\& Jam Sessions (4 hrs) |  |  |
| $\mathbf{2}$ | Group Discussion (4 hrs) |  |  |
| $\mathbf{3}$ | Presentations (Individual and group) (4 hrs) |  |  |
| $\mathbf{4}$ | Listening Practice (2 hrs) |  |  |
| $\mathbf{5}$ | News/ Book Review (Presentation based) (4 hrs) |  |  |
| Lab Course Outcome: <br> At the end of the course students will be able to - <br> CO 1 Learn to use English language for communicating ideas. |  |  |  |
| CO 2 | Develop interpersonal skills and leadership abilities. |  |  |
| CO 3 | Practice their public speaking skills and gain confidence in it. |  |  |
| CO 4 | Realize the importance of analytical listening during communication. |  |  |
| CO 5 | Apply critical thinking skills in interpreting texts and discourses. |  |  |


| Course Code | AME0151 | L T P | Credit |
| :---: | :---: | :---: | :---: |
| Course Title | Digital Manufacturing Practices | 003 | 1.5 |
| Course objective: |  |  |  |
| To im | To impart knowledge to students about the latest technological developments in manufacturing technology. |  |  |
| 2 To ma <br> manufa | To make the students capable to identify and use primary machine tools for manufacturing of job/product. |  |  |
| 3 Tomak <br> progra | Tomake the students understand constructional features, principle and coding programming of CNC machines. |  |  |
| 4 To exp | in current and emerging 3D printing technolog | industrie |  |
| 5. ${ }^{\text {To imp }}$ | t fundamental knowledge of Automation and |  |  |
| Pre-requisites: Basic knowledge about materials and their properties |  |  |  |
| Course Contents / Syllabus |  |  |  |
| UNIT-I | asics of Manufacturing processes |  | ours |
| Introduction to workshop layout, engineering materials, mechanical properties of metals, introduction to manufacturing processes, concept of Industry 4.0. |  |  |  |
| UNIT-II | Machining processes |  | ours |
| Introduction to conventional and CNC machines, machining parameters and primary operations, CNC programming- G\& M Codes |  |  |  |
| UNIT-III | dditive manufacturing (3D printing) |  | ours |
| Introduction to additive manufacturing, 3D printing technologies, reverse engineering, introduction to injection moulding. |  |  |  |
| UNIT-IV | utomation and Robotics |  | Hours |
| Introduction to basics of automation and robotics, classification based on geometry and path movements. PTP motion using robot arm. |  |  |  |
| Total hours :14 |  |  |  |


| Course outcome: After completion of this course students will be able to |  |  |
| :---: | :---: | :---: |
| CO 1 | Understand various manufacturing process which are applied in the industry. | $\mathrm{K}_{1}, \mathrm{~K}_{2}$ |
| CO 2 | Demonstrate the construction and working of conventional machine tools and computer controlled machine tools. | $\mathrm{K}_{1}, \mathrm{~K}_{2}$ |
| CO 3 | Understand the programming techniques of CNC machines and Robotic arms. | $\mathrm{K}_{1}, \mathrm{~K}_{2}$ |
| CO 4 | Use the different 3D printing techniques. | $\mathrm{K}_{1}, \mathrm{~K}_{2}$ |
| Text books |  |  |
| A course in Workshop technology by B.S. Raghuwanshi, Vol I \& II, Dhanpat Rai \& sons, New Delhi (30\%) |  |  |
| Industrial automation and Robotics by A.K. Gupta., S K Arora, Laxmi publication (30\%) |  |  |
| CNC Fundamentals and Programming by P.M Agarwal, V.J Patel, Charotar Publication (25\%) |  |  |
| Reference Books |  |  |
| (1) Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition, 2002.(80\% syllabus) |  |  |
| (2) Rapid Product Development, Kimura Fumihiko(25\% syllabus) |  |  |
| (3) CNC Machines by M.Adhitan, B.S Pabla; New age international. (25\% syllabus) |  |  |
| (4) CAD/CAM, by Groover and Zimmers, Prentice Hall India Ltd(25\% syllabus) |  |  |
| NPTEL/Youtube /Faculty video links: |  |  |
| Unit 1 | https://youtu.be/b1U9W4iNDiQ, https://youtu.be/QZdY3ZRY9RA, https://youtu.be/KX1_NqNTIqw , https://youtu.be/deAIYwPns6w |  |
| Unit2 | https://youtu.be/jF4F8Zr2YO8 , https://youtu.be/bDpfTzV6StA, https://youtu.be/6G3sHym7YSo |  |
| Unit3 | https://youtu.be/TZmYTfPfhNE, https://youtu.be/yW4EbCWaJHE |  |
| Unit4 | https://youtu.be/K-Zg1-fR9kU , https://youtu.be/xrwz91xpMJg, https://youtu.be/i8vYCIEnyk0 |  |




| CO 3 | Apply the Laplace transform to solve ordinary differential equations | $\mathrm{K}_{3}$ |
| :---: | :---: | :---: |
| CO 4 | Apply the concept of vector calculus to evaluate line, surface and volume integrals. | $\mathrm{K}_{3}$ |
| CO 5 | Solve the problems of Proportion \& Partnership, Problem of ages, Allegation \& Mixture, Direction, Blood relation , Simple \& Compound interest | $\mathrm{K}_{3}$ |
| Text books: |  |  |
| (1) B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill Publishing Company Ltd.. |  |  |
| (2) B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher. |  |  |
| Reference Books: |  |  |
| 1. E. Kreyszig, Advance Engineering Mathematics, John Wiley \& Sons. |  |  |
| 2. Peter V. O'Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning. |  |  |
| 3. Maurice D. Weir, Joel Hass, Frank R.Giordano, Thomas, Calculus, Eleventh Edition, Pearson. |  |  |
| 4. G.B Thomas, R L Finney, Calculus and Analytical Geometry, Ninth Edition Pearson. |  |  |
| 5. James Ward Brown and Ruel V Churchill, Fourier Series and Boundary Value Problems, 8th Edition-Tata McGraw-Hill |  |  |
| 6. D. Poole, Linear Algebra : A Modern Introduction, 2nd Edition, Brooks/Cole. |  |  |
| 7. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi. |  |  |
| 8. Charles E Roberts Jr, Ordinary Diffrential Equations, Application, Model and Computing, CRC Press T\&F Group. |  |  |
| 9. Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, 6th Edition, Tata McGraw-Hill. |  |  |
| 10. James Ward Brown and Ruel V Churchill, Complex Variable and Applications, 8th Edition Tata McGraw-Hill. |  |  |
| 11. P. Sivaramakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st Edition, Pearson India Education Services Pvt. Ltd. |  |  |
| 12. Advanced Engineering Mathematics By Chandrika Prasad, Reena Garg Khanna Publishing House, Delhi. |  |  |
| 13. Quantitative Aptitude by R.S. Aggrawal. |  |  |
| Link: |  |  |
| Unit 1 | https://www.youtube.com/watch?v=Q\|42qcOLKfo\&t=7s <br> https://www.youtube.com/watch?v=qlyx1kFTqT8 <br> https://www.youtube.com/watch?v=n $3 Z m n V n r c 4$ <br> https://www.youtube.com/watch?v=19Vt7ds8Lvw |  |
| Unit 2 | https://www.youtube.com/watch?v=HUKR4LWrZ14\&t=74s <br> https://www.youtube.com/watch?v=uei7JPnPpVg <br> https://www.youtube.com/watch?v=ummJvIOAx2Q <br> https://www.youtube.com/watch?v=bWTmUWWZnhQ |  |


|  | https://www.youtube.com/watch?v=wpN1wn98XiA <br> https://www.youtube.com/watch?v=gK1Y11UxOhw <br> https://www.youtube.com/watch?v=Clwkvn77QrE\&t=10s <br> https://www.youtube.com/watch?v=LGxE_yZYigl |
| :---: | :---: |
| Unit 3 | ```https://youtu.be/nmp-5tSp-UY https://youtu.be/6ANT4eD6fII https://youtu.be/c9NibpoQjDk https://www.youtube.com/playlist?list=PLNOGIXC4kCBT8G5pWCrH71hmwaAvwsBY3``` |
| Unit 4 | https://youtu.be/IwgqKjA6wko <br> https://youtu.be/d4OyeuRTZNA <br> https://youtu.be/i36IJKSJMQk <br> https://youtu.be/DhwMOrl6Q9g <br> https://youtu.be/DhwMOrl6Q9g <br> https://youtu.be/fsMouTxce A <br> https://youtu.be/va5olnzDCGc <br> https://youtu.be/2SB3IVCwW1w <br> https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable- <br> functions/line-integrals-vectors/v/line-integra <br> https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable- <br> functions/3d-flux/v/vector-representation-of-a-su <br> http://nucinkis-lab.cc.ic.ac.uk/HELM/workbooks/workbook 29/29 2 surfac <br> https://www.youtube.com/watch?v=Mb6Yb-SGqio <br> https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and- <br> stokes-theorem/stokes-theorem/v/stokes-theorem-intuition <br> https://www.youtube.com/watch?v=eSqznPrtzS4 |
| Unit 5 | https://www.GovernmentAdda.com |


| B. TECH FIRST YEAR |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Code | AAS0202 | L | T | P | Credit |


| Course Title | Engineering Chemistry | $3 \quad 1 \quad 0$ | 4 |
| :---: | :--- | :--- | :--- | :--- |
| Course objective: | The course let students gain knowledge on existing and future fuels and their <br> calorific values |  |  |
| 2 | The course explains the major water problems and their treatment. Applications <br> of Phase Rule in heterogeneous system. |  |  |
| 3 | The course provides basic concepts of Electrochemistry and Cements. It also <br> provides basic knowledge about corrosion and their prevention methods. |  |  |
| 4 | The course relies on elementary preparation and application of polymers and <br> future polymers. Applications of Organometallic compounds. |  |  |
| 5 | The course intends to provide an overview of Molecular orbital theory and basic <br> concepts of spectroscopic techniques. |  |  |

## Pre-requisites:

| Course Contents / Syllabus |  |  |
| :--- | :--- | ---: |
| UNIT-I | FUEL \& CHEMISTRY IN DAILY LIFE | 9 hours |
| Fuels: Characteristics of Good Fuel, Classification of fuels, Calorific Values (HCV \& LCV and <br> their relationship), Determination of Calorific values (bomb calorimeter \& Dulong's method), <br> Analysis of Coal, Biogas : Composition and its application, Introduction of Bharat Stage Emission <br> Standard (BSES )System. Lubricants- Classification, mechanism, and applications <br> Chemistry in daily life: Hand sanitizers, surface sanitizers, Way to know content \& composition of <br> daily needs. |  |  |
| UNIT-II | WATER CHEMISTRY AND PHASE RULE | 9 hours |
| Potable Water, Hardness of water: Causes, types of hardness, Disadvantage of hard water, <br> expression of hardness - Units, CaCO Equivalence concept, Boiler Feed Water, Boiler trouble, <br> Calgon Conditioning, Techniques for water softening: Lime-Soda, Zeolite, Ion- exchange resin, <br> Reverse Osmosis (RO). Comparison between traditional water filters and RO. <br> Phase Rule and its application to Water System. |  |  |
| UNIT-III | ELECTROCHEMISTRY AND SOLID CHEMISTRY |  |

Electrochemistry: Galvanic cell, Electrode Potential, Lead storage battery, $\mathrm{H}_{2}-\mathrm{O}_{2}$ Fuel Cell, Concept of lithium ion batteries and its application, chemical concepts of air bags in automobiles.
Metallic Corrosion: causes and its Prevention.
Band theory of solids. Liquid crystals and its applications.
UNIT-IV $\quad$ POLYMERS AND THEIR APPLICATIONS
9 hours
Polymers: Basic concepts of polymer- Blends and composites. Conducting and Biodegradable Polymers, Preparations and applications of some industrially important Polymers: Thermosetting Polymers (Bakelite, Melamine: Urea-Formaldehyde Resins), Elastomers (Natural rubber and its vulcanization, Buna N, Buna S, Neoprene), synthetic Fibers (Nylon6, Nylon 6,6, Terylene).
UNIT-V $\quad$ SPECTROSCOPIC TECHNIQUE AND ADVANCE METERIALS $\quad$ 9 hours

Point defects in Crystals. Structure, applications of Fullerenes, Semiconductor Materials, Basic Concept of Smart materials, Concepts of Nano-Materials and its applications.

| Elementary ideas and simple applications of UV- Visible, IR and Raman spectral Techniques |  |
| :---: | :--- |
| Course outcome: |  |
| CO 1 | Understand the concept of fuel, their calorific value and it's usage |
| CO 2 | Develop the understanding to apply the principles of water chemistry to the water <br> treatment |
| CO 3 | Apply concepts of Electrochemistry, corrosion and their prevention methods with cement <br> manufacturing |
| CO 4 | Understand elementary preparation and application of polymers and Organometallic <br> compounds. |
| CO 5 | Understand Molecular orbital theory and simplified concepts of spectroscopic techniques |
| Text books |  |
| 1. Chemistry for Engineers, by S. Vairam and Suba Ramesh; Wiley India |  |
| 2. Engineering Chemistry by Sunita rattan; Ketson Publications |  |
| 3. Engineering Chemistry, by E.R. Nagarajan; Wiley India |  |
| 4. Concise Inorganic Chemistry by J.D. Lee; Wiley India |  |
| Reference Books |  |
| 1. Textbook of Engineering Chemistry by Dr. Gopal Krishna Bhatt, Acme Publishers |  |
| 2. Chemistry (9th ed), by Raymond Chang, Tata McGraw-Hill |  |
| 3. Chemistry Concepts and Applications by Steven S. Zumdahl; Cengage Learning |  |
| 4. Engineering Chemistry Author: Abhijit Mallick, Viva Books |  |
| 5. Text Book of Engineering Chemistry by Harsh Malhotra; Sonali Publications |  |
| 6. Organic Chemistry (6 ed) by Morrison \& Boyd; Pearson Education |  |
| 7. Physical Chemistry by Gordon M. Barrow; Mc-Graw Hill |  |
| 8. Organic Chemistry, Volume 1(6 ed)\& 2 (5ed) by I. L. Finar; Pearson Education |  |
| 9. Atkins' Physical Chemistry by Peter Atkins \& Julio De Paula; Oxford University Press |  |


| B. TECH FIRST YEAR |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Code | ACSE0201 | L T P | Credit |  |  |
| Course Title | Programming for Problem Solving using C | $\mathbf{3}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{3}$ |


global variables, Nesting of Scope, Storage classes: Auto, Register, Static and Extern Arrays: Array notation and representation (one and two dimensional), array using pointers, manipulating array elements, 2-d arrays used in matrix computation. Strings and C string library, Structure, union, Array of structures, Self-referential structures, passing arrays and structure as arguments
Searching techniques (Linear, Binary Search), Sorting Algorithms (Bubble, Insertion and Selection)
Introduction to dynamic memory allocation (malloc(), calloc(), realloc(), free())

| UNIT-V | File handling and Introduction to Embedded Programming | $\mathbf{8}$ hours |
| :--- | :--- | :--- |

File handling: File Pointer, File I/O functions and modes, Input and Output using file pointers, Character Input and Output with Files.
Introduction to Embedded Programming: Embedded systems, Introduction to 8051microcontrolller, Installing the Keil software and loading the project, Configuring the simulator, Building the target, Running the simulation, Dissecting the program.
Case Study: Intruder Alarm System.
Course outcome: At the end of course, the student will be able to

| CO 1 | Develop simple algorithms for arithmetic and logical problems. | $\mathrm{K}_{2}$ |
| :--- | :--- | :--- |
| CO 2 | Implement and trace the execution of programs written in C language. | $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{4}$ |
| CO 3 | Implement conditional branching and iteration | $\mathrm{K}_{3}$ |
| CO 4 | Use function, arrays and structures to develop algorithms and programs. | $\mathrm{K}_{2}, \mathrm{~K}_{6}$ |
| CO 5 | Use searching and sorting algorithm to arrange data and use file handling <br> for developing real life projects | $\mathrm{K}_{2}, \mathrm{~K}_{4}$ |
| Textbooks: |  |  |

(1) Herbert Schildt, "C: The Complete Reference", OsbourneMcGraw Hill, 4th Edition, 2002.
(2) E Balaguruswami, "Computer Concepts and Programming in C", McGraw Hill, 2010.
(3) Michael J. Pont, "Embedded C", Addison-wesley Pearson Education, 2002.

## Reference Books:

(1) The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education.
(2) Yashwant P. Kanetkar"Let Us C", BPB publication, 2017.
(3) Computer Basics and C Programming by V. Rajaraman, PHI Learning pvt. Limited, 2015.
(4) Yashwant P. Kanetkar, "Working with C", BPB publication, 2003.

| E-Book Links: |
| :---: |
| (1) https://en.wikibooks.org/wiki/C Programming |
| (2) https://en.wikibooks.org/wiki/A_Little_C_Primer |
| (3) https://www.goodreads.com/book/show/6968572-ansi-c-programming |
| (4)https://www.pdffiller.com/347652461-projects-in-c-by-yashwant-kanetkar-pdfpdf-c-projects-yashwant-kanetkar-pdf-form- |
| (5)http://www.freebookcentre.net/programming-books-download/Lecture-Notes-On-C-Programming-by-L.-V.-Narasimha-Prasad-and-E.-Krishnarao-Patro.html |
| Reference Links: |
| (1) https://nptel.ac.in/courses/106/104/106104128/ |
| (2)https://nptel.ac.in/courses/106/104/106104074/ |
| (3)https://nptel.ac.in/courses/106/102/106102066/ |
| (4)https://nptel.ac.in/courses/106/105/106105171/ |
| (5)https://www.youtube.com/watch?v=IdXrCPzNnkU\&list=PLJ5C_6qdAvBFzL9su5JFX8x80BMhkPy1\&index=4 |
| (6)https://www.youtube.com/watch?v=L2oataK7F10\&list=PLJ5C_6qdAvBFzL9su5JFX8x80BMhkPy1\&index=11 |
| (7)https://www.youtube.com/watch?v=K538VFFmFGc\&list=PLJ5C_6qdAvBFzL9su5JFX8x80BMhkPy1\&index=14 |
| (8)https://www.youtube.com/watch?v=HyDpW7A16_E\&list=PLJ5C_6qdAvBFzL9su5JFX8x80BMhkPy1\&index $=15$ |
| (9)https://www.youtube.com/watch?v=0g82dDC-mtc\&list=PLJ5C_6qdAvBFzL9su5JFX8x80BMhkPy1\&index $=17$ |
| (10)https://www.youtube.com/watch?v=d1EHD8RoLDQ\&list=PLJ5C 6qdAvBFzL9su5J FX8x80BMhkPy1\&index=19 |
| (11)https://www.youtube.com/watch?v=5xJ1GXTa7IU\&list=PL55C_6qdAvBFzL9su5J- <br> FX8x80BMhkPy1\&index=21 |
| (12)https://www.youtube.com/watch?v=19828WOCEMg\&list=PLJ5C_6qdAvBFzL9su5JFX8x80BMhkPy1\&index=26 |

```
(13)https://www.youtube.com/watch?v=V7AZuMuJmXY&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=32
(14)https://www.youtube.com/watch?v=AJvCmpt1UU8&list=PL55C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=37
(15)https://www.youtube.com/watch?v=1iwmwEJhcMw&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=39
(16)https://www.youtube.com/watch?v=K4qXMLItABI&list=PLI5C 6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=45
(17)https://www.youtube.com/watch?v=Lole 9cTtPE&list=PLJ5C 6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=53
(18)https://www.youtube.com/watch?v=kDDd7AmXq1w&list=PLJ5C 6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=55
(19)https://www.youtube.com/watch?v=Z 0xXmOgYtY&list=PLI5C 6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=58
(20)https://www.youtube.com/watch?v=u60YRSB2isQ&list=PLD5C 6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=61
```

| B.TECH FIRST YEAR |  |  |  |
| :--- | :--- | :--- | :---: |
| Course Code | AEC0201 | L T P | Credits |
| Course Title | Basic Electrical and Electronics Engineering | $\mathbf{3 1 0}$ | 4 |
| Course objective: |  |  |  |

1. To provide the basics of DC and AC analysis of (Single phase and Three phase) electrical circuits.
2. To study the basics of transformer and calculate its efficiency.
3. To impart elementary knowledge of Power System Components, Earthing, and Energy Consumption.
4. To provide the knowledge of Diode, Display devices, Op-Amp, Sensors, IoT and its application.

| Pre-requisites: Basic knowledge of 12th Physics and Mathematics |  |  |
| :---: | :---: | :---: |
| Course Contents / Syllabus |  |  |
| UNIT-I | D.C CIRCUIT ANALYSIS AND NETWORK THEOREMS <br> Concept of network, Active and passive elements, voltage and current sources, concept of linearity and linear network, unilateral and bilateral elements, source transformation, Kirchoff's Law: loop and nodal methods of analysis, star delta transformation, network theorems: Superposition theorem, Thevenin's theorem, Norton's theorem, maximum power transfer theorem. | 10 |
| UNIT-II | STEADY STATE ANALYSIS OF AC CIRCUIT <br> Single phase AC circuit: AC fundamentals, concept of phasors, phasor representation of sinusoidally varying voltage and current, analysis of series and parallel RLC circuits, j-notation, Different types of power, power factor, resonance in series and parallel circuits. <br> Three phase AC circuit: Advantages of three phase circuit, voltage and current relations in star and delta connections. | 10 |
| UNIT-III | SINGLE PHASE TRANSFORMER AND ELEMENTS OF POWER SYSTEM <br> Single Phase Transformer: Principle of operation, construction, EMF equation, equivalent circuit, losses and efficiency. <br> Introduction to Elements of Power System: General layout of Power system, Components of Distribution system: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Importance of Earthing, Elementary calculations for energy consumption, Battery Backup. | 09 |
| UNIT-IV | SEMICONDUCTOR DIODE AND THEIR APPLICATIONS <br> Introduction of Semiconductors: Intrinsic and Extrinsic, P-N Junction Diode: Depletion layer, V-I characteristics, Half and Full Wave rectification, Clippers, Breakdown Mechanism: Zener and Avalanche, Zener Diode as Shunt Regulator. <br> Display Devices <br> Liquid Crystal Display (LCD), Light Emitting Diode (LED), Organic-Light Emitting Diode (O-LED), 7- segment display. | 10 |
| UNIT-V | OPERATIONAL AMPLIFIERS <br> Introduction, Op-Amp Basic, Practical Op-Amp Circuits (Inverting Amplifier, Noninverting Amplifier, Summing Amplifier, Integrator, Differentiator). | 09 |



|  | 4. https://youtu.be/GROtUE6ILc4 <br> 7. https://youtu.be/k FqhEOuNEU |
| :---: | :---: |
| Unit 4 | 1. https://youtu.be/EdUAecpYVWQ? <br> list=PLwjK_iyK4LLBj2yTYPYKFKdF6KIg0ccP2 <br> 2. https://youtu.be/MZPeRlst8rQ <br> 3. https://youtu.be/qQucInufX-s <br> 4. https://youtu.be/tPFI2 PdCYA <br> 8. https://youtu.be/zA-Utz-s9GA |
| Unit 5 | 1. https://youtu.be/AuZ00cQ0UrE? <br> list=PLwjK_iyK4LLDBB1E9MFbxGCEnmMMOAXOH <br> 2. https://youtu.be/aU24RWIgJVs?list=PLwjK iyK4LLDBB1E <br> 3. https://youtu.be/c5NeTnp_poA <br> 4. https://youtu.be/KLGbPgls18k <br> 5. https://youtu.be/UFJzQH3G1Ko?list=PLVrieKUj5RceFRq5MKy-fEHdumStFPLt |


| B.TECH. FIRST YEAR(Foreign Language) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Course Code | AASL0202 | L T P | Credit |  |
| Course Title | French | $\mathbf{2} \mathbf{0} \mathbf{0}$ | $\mathbf{0 2}$ |  |
| Course objective: | An introduction to French language and culture - Students will <br> learn to understand and articulate in day to day, real-life <br> situations. |  |  |  |
| 1 |  | ( |  |  |


| 2 | The course provides a foundation in the four basic skills LSRW (Listening, Speaking, Reading, and Writing) of language learning. |  |
| :---: | :---: | :---: |
| Pre-requisite: <br> - The student should be able to communicate in English. |  |  |
| Course Contents / Syllabus |  |  |
| UNIT-I | Introduction to French | 7 Hours |
| $>$ Basic greetings and introductions <br> $>$ Differences and similarities between English and French alphabets <br> $>$ Recognize and spell simple words and phrases in French <br> $>$ Commonly used nouns and adjectives |  |  |
| UNIT-II | Vocabulary Building | 8 Hours |
| $>$ Introduce oneself and others <br> $>$ Identify, speak and understand the days of the week/ months/ seasons/colours <br> $>$ Speak and understand simple weather expressions <br> $>$ Understand, ask and answer about date of birth/ important dates and age <br> $>$ Identify, understand and write numbers from 1-60 <br> $>$ Use the masculine and feminine of regular nouns and adjectives (petit/ grand/ blond/ rouge/ sympa) |  |  |
| UNIT-II | Everyday Common Simple Sentences | 7 Hours |
| $>$ In the city/ naming places and buildings <br> $>$ Means of transport / basic directions <br> $>$ Listen to, understand, and respond to everyday conversation <br> $>$ Respond to questions about ourselves and family members <br> $>$ Use the singular and plural of regular nouns (-s). |  |  |
| UNIT-IV | Reading | 10 Hours |


| $>$ Food, drink, groceries and meal <br> $>$ Everyday life/ telling time <br> $>$ Making appointments <br> $>$ Use definite and indefinite articles. |  |  |
| :---: | :---: | :---: |
| UNIT-V | Writing | 8 Hour |
| $>$ Fill in a simple form ( fiched'inscription/ carte d' identité) <br> $>$ Describe pictures (Speak and Write) <br> $>$ Write a short text on oneself |  |  |
| Course outcome <br> At the end of the course students will be able to |  |  |
| CO 1 | Recognize the basic sounds, letters, numbers, words and phrases of French. |  |
| CO 2 | Develop basic French vocabulary |  |
| CO 3 | Use simple phrases in real life conversations |  |
| CO 4 | Read simple sentences |  |
| CO 5 | Write simple sentences and fill in a form |  |


| B.TECH FIRST YEAR (Foreign Language) |  |  |  |
| :---: | :--- | :--- | :--- |
| Course Code | AASLO203 | L T P | Credit |
| Course Title | German | $\mathbf{2} \mathbf{0} 0$ | $\mathbf{0 2}$ |
| Course objective: |  |  |  |
| 1 | An introduction to German language and culture. Students will learn to <br> understand and articulate in day to day real-life situations. |  |  |
| 2 | The course provides a foundation in the four basic skills LSRW <br> (Listening, Speaking, Reading, and Writing) of language learning. |  |  |
| Pre-requisites: <br> The student should be able to communicate in basic English. |  |  |  |
| Course Contents / Syllabus |  |  |  |



| CO 3 | Use simple phrases in everyday conversations |  |
| :--- | :--- | :--- |
| CO 4 | Read simple sentences |  |
| CO 5 | Write simple sentences |  |
| Text books | 1. NETZWERK Deutsch alsFremdsprache A1(Goyal, New Delhi, 2015) |  |
| 2. Lagune 1 | 3. Schulz-Griesbach: Deutsch alsFremdsprache. Grundstufe in einem Band (for Grammar) |  |
| Online Practice Material |  |  |
| 1. https://www.goethe.de/en/spr/kup/prf/prf/sd1/ueb.html |  |  |
| 2. http://www.deutschkurse.passau.de/JM/images/stories/SKRIPTEN/a1_skript_gr.pdf |  |  |
| 4.https://www.schubert-verlag.de/aufgaben/arbeitsblaetter_a1_z/ <br> al_arbeitsblaetter_index_z.htm |  |  |


| B.TECH FIRST YEAR (Foreign Language) |  |  |  |
| :--- | :--- | :---: | :---: |
| Course Code | AASL0204 | L T P | Credit |
| Course Title | Japanese | $\mathbf{2 0} 0$ | $\mathbf{0 2}$ |
| Course objective: | An introduction to Japanese language and culture. Students will learn to <br> understand and articulate in day to day real-life situations. |  |  |
| $\mathbf{1}$ | The course provides a foundation in the four basic skills LSRW (Listening, <br> Speaking, Reading, and Writing) of language learning. |  |  |
| Pre-requisites: <br> The student should be able to communicate in basic English. <br> The student should be keen to learn the language. |  |  |  |
| Course Contents / Syllabus |  |  |  |
| UNIT-I |  |  |  |

Introduction to Japanese alphabet（Hirangana），phonetics and pronunciation．
－Introducing ourselves and others，
－Introduction to Japanese Language
－Types of Japanese scripts－HIRANGANA，KATAKANA，
－Basic pronunciation rules
－Time and numbers－telling and asking the time，counting cardinal numbers，
－Grammar－different types of verbs，nouns－number \＆gender，pronouns，present and simple past tense．

| UNIT－II | Vocabulary building | 8 Hours |
| :--- | :--- | :--- |

Use simple sentences to answer basic personal questions
－Expressing gratitude
－Invitations
－Talking about plans
－Holidays
－Hotels \＆restaurants
－Town \＆country
Word order－sentence，question，negative

| UNIT－III | Everyday sentences | common | simple | 8 Hours |
| :---: | :---: | :---: | :---: | :---: |
| －Customer and shopkeeper <br> －Making a request <br> －Home／Relatives／Fruits／Vegetables／Animals Grammar－Singular vs．Plural Question formation |  |  |  |  |
| UNIT－IV | Reading |  |  | 8 Hours |
| －Transportation <br> －Week／Month names <br> －Shopping <br> Basic Japanese grammar rules－particles：か（ka），は（wa），の（no），と（to），を（o），に（ni）， も（mo），が（ga），や（ya）． <br> Grammar－Present，Past，Future |  |  |  |  |
| UNIT－V | Writing |  |  | 8 Hours |

- Write short text on oneself

Grammar- Pronouns - subject, object, possessive, Modal verbs

## Course outcome:

At the end of the course students will be able to

| CO1 | understand the basics of Japanese Language and its script. |
| :--- | :--- |
| CO2 | recognise the foundational vocabulary. |
| CO3 | use simple phrases in everyday conversations. |
| CO4 | read simple sentences. |
| CO5 | write simple sentences |
| References: |  |

- https://www.youtube.com/watch?v=6p9\|I_j0zjc\&ab_channel=LearnJapanesewithJapanesePod101.com
- https://books.google.co.in/books?
id=4nHnMa4ZwMC\&newbks=0\&printsec=frontcover\&dqminna+no+nihongo\&hl=en\&source=newbks fb\&redi $\underline{r}$ esc=y\#v=onepage\&q=minna\%20no\%20nihongo\&f=false

| B. TECH FIRST YEAR |  |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Course Code | AAS0252 | L T P | Credit |  |  |
| Course Title | Engineering Chemistry Lab | $\mathbf{0}$ 0 2 | $\mathbf{1}$ |  |  |
| Suggested list of Experiment |  |  |  |  |  |
| Sr. No. | Name of Experiment |  |  |  |  |
| 1 | Determination of alkalinity in the given water sample. <br> EDTA. |  |  |  |  |
| 2 | Determination of available chlorine in bleaching powder. |  |  |  |  |
| 3 |  |  |  |  |  |
| 4 | Determination of chloride content in water sample by Mohr's method. |  |  |  |  |


| 5 | Determination of iron content in the given solution. |
| :---: | :---: |
| 6 | Verification of Beers Law using colored complex solution. |
| 7 | Standardization of an alkali solution through an standard acid by pH -metric titration |
| 8 | Viscosity of an addition polymer like polyester by viscometer. |
| 9 | Determination of iron concentration in sample of water by Colorimetric Method |
| 10 | Determination of Flash Point of given fuel sample. |
| 11 | Preparation of Bakelite and Urea formaldehyde resin. |
| 12 | Determination of Hardness by conductivity method. |
| Lab Course Outcome: After completion of this course the student will be able to: |  |
| CO 1 | Use different analytical instruments. |
| CO 2 | Calculate molecular/system properties such as surface tension, viscosity, conductance of solution, chloride and iron content in water |
| CO 3 | Calculate flash point of fuel and lubricants |
| CO 4 | Estimate the rate constant of reaction. |
| Link: |  |
| Unit 1 | https://nptel.ac.in/courses/103/105/103105110/ |
| Unit 2 | http://ecoursesonline.iasri.res.in/mod/page/view.php?id=124279 |
| Unit 3 | https://nptel.ac.in/courses/122/101/122101001/ https://nptel.ac.in/courses/113/104/113104082/ |
| Unit 4 | https://nptel.ac.in/courses/113/105/113105028/ |
| Unit 5 | https://unacademy.com/lesson/molecular-orbital-theory-course-overview/ 8INM3NUR |


| B. TECH FIRST YEAR |  |  |  |
| :--- | :--- | :--- | :---: |
| Course Code | AEC0251 | L T P | Credit |
| Course Title | Basic Electrical and Electronics Engineering Lab | $\mathbf{0}$ 0 2 | $\mathbf{0 1}$ |
| Suggested list of Experiment |  |  |  |
| Sr. No. | Name of Experiment | CO |  |
| $\mathbf{1}$ | To Verify Kirchhoff's laws of a circuit | 1 |  |
| $\mathbf{2}$ | To Verify Superposition Theorem of a circuit | 1 |  |
| $\mathbf{3}$ | To Verify Thevenin's Theorem of a circuit | 1 |  |
| $\mathbf{4}$ | To Verify Norton's Theorem of a circuit | 1 |  |
| $\mathbf{5}$ | To Verify Maximum Power Transfer Theorem of a circuit | 1 |  |
| $\mathbf{6}$ | Measurement of power and power factor in a single phase ac series inductive <br> circuit and study improvement of power factor using capacitor | 2 |  |
| $\mathbf{7}$ | Study of phenomenon of resonance in RLC series circuit and obtain resonant <br> frequency. | 2 |  |
| $\mathbf{8}$ | Determination of efficiency by load test on a single phase transformer having <br> constant input voltage using stabilizer. | 3 |  |
| $\mathbf{9}$ | Study and Calibration of single phase energy meter. | 3 |  |
| $\mathbf{1 0}$ | To design half wave rectifier circuits using diode. | 4 |  |
| $\mathbf{1 1}$ | To generate random numbers using 7-Segment display. | 4 |  |
| $\mathbf{1 2}$ | Study of Cathode Ray Oscilloscope and measurement of different parameters | 4 |  |


|  | using CRO. |  |
| :--- | :--- | :---: |
| $\mathbf{1 3}$ | To design and perform Adder and Subtractor circuit using Op-Amp. | 5 |
| $\mathbf{1 4}$ | To understand the concept of Wireless Home Automation System based on IoT <br> for controlling lights and fans. | 5 |
| $\mathbf{1 5}$ | To calculate and draw different electrical parameter using MATLAB/Simulink for <br> a circuit. | 1,4 |
| $\mathbf{1 6}$ | Energy audit of labs and rooms of different blocks. | 3 |
| Lab Course Outcome: After successful completion of this course students will be able to: |  |  |
| CO 1 | Apply the principle of KVL/KCL and theorem to analysis DC Electric circuits. |  |
| CO 2 | Demonstrate the behavior of AC circuits connected to single phase AC supply and measure <br> power in single phase as well as three phase electrical circuits. |  |
| CO 3 | Calculate efficiency of a single phase transformer and energy consumption. |  |
| CO 4 | Understand the concept and applications of diode, Op-Amp,sensors and IoT. |  |


| B. TECH FIRST YEAR |  |  |  |
| :---: | :--- | :--- | :---: |
| Lab Code | ACSE0251 | L T P | Credit |
| Lab Title | Programming for Problem Solving Using C Lab | $\mathbf{0 0} 2$ | $\mathbf{1}$ |
| Course outcome: At the end of course, the student will be able to |  |  |  |
| CO 1 | Write programs for arithmetic and logical problems. | $\mathrm{K}_{1}, \mathrm{~K}_{3}$ |  |
| CO 2 | write programs for conditional branching, iteration and recursion | $\mathrm{K}_{2}, \mathrm{~K}_{3}$ |  |
| CO 3 | Write programs using functions and synthesize a complete program using <br> divide and conquer approach | $\mathrm{K}_{4}$ |  |
| CO 4 | write programs using arrays, pointers and structures | $\mathrm{K}_{3}, \mathrm{~K}_{4}$ |  |
| CO 5 | Write programs to perform input/output operations on files | $\mathrm{K}_{3}, \mathrm{~K}_{4}$ |  |

## List of Experiment:

| S.No. | Fundamental Experiments |
| ---: | :--- |
| $\mathbf{1 .}$ | WAP that calculate the simple interest and compound interest when principal, rate of <br> interest and time are given. |
| $\mathbf{2 .}$ | WAP that swaps values of two variables using a third variable and without using |


|  | third variable |
| :---: | :---: |
| 3. | WAP to compute the roots of quadratic equations. |
| 4. | WAP that accepts the marks of 5 subjects and finds the percentage marks obtained by the student.It also prints grades according to the following criteria: <br> Between 90-100\%------------Print 'A' <br> 80-90\%-------------------------Print 'B' <br> 60-80\%------------------------Print 'C' <br> Below 60\%-------------------Print 'D' |
| 5. | WAP to simulate the calculator (Arithmetic operations:,,$+- /, *$ ). |
| 6. | Write a menu driven program that computes the area of geometrical figures such as rectangle, square, circle and triangle. |
| 7. | WAP to find the factorial of a given number. |
| 8. | WAP to print the Fibonacci series. |
| 9. | WAP to check whether the entered number is prime or not. |
| 10. | WAP to convert the binary number to decimal number and vice versa |
| 11. | WAP to print allArmstrong numbers from 1 to N . |
|  | Arrays |
| 12. | WAP to find the minimum and maximum element of the array. |
| 13. | WAP to search an element in an array using Linear Search. |
| 14. | Write programs to sort the elements of the array in ascending order using Bubble Sort technique. |
| 15. | WAP to compute the multiplication of two matrices. |
|  | Pointers and Functions |
| 16. | WAP to swap the values of two numbers using the call by pointer. |
| 17. | WAP to compute the factorial of the number using the recursive function factorial (). |
| 18. | WAP to compute the length of the string using the user defined function xstrlen(). |
| 19. | WAP to concatenate two strings using the user defined function xstrcat(). |
|  | Strings and Structures |
| 20. | WAP to reverse the string. Also check whether the given string is in palindrome or not. |
| 21. | WAP to create structure of a student having member name, roll number, age, marks. Also, create an array of structure of 50 students and display the detail of all the students having marks more than 70. |
|  | File Handling |
| 22. | WAP to copy the contents of one file onto another file. |
| 23. | WAP to compare the contents of two files and determine whether they are same or not. |
| 24. | WAP to check whether the given word exist in a file or not. If yes, then find the number of times it occurs. |
|  | Dynamic Memory Allocation |
| 25. | WAP to create an array using dynamic memory allocation. |


|  |  |
| ---: | :--- |
|  | Embedded C |
| $\mathbf{2 6 .}$ | Installation and working with Keil. |
| $\mathbf{2 7}$. | Implement Intruder alarm system. |


| B. TECH FIRST YEAR |  |  |  |
| :---: | :---: | :---: | :---: |
| Course Code | AME0252 | L T P | Credit |
| Course Title | Engineering Graphics \& Solid Modelling | 003 | 1.5 |
| Course objective: |  |  |  |
| To un dra | To familiarize the students with the concepts of Engineering Graphics and provide understanding of the drafting, principles, instruments, standards, conventions of drawings, scales, curves etc. |  |  |
| 2 To i | To impart knowledge about projections of point, lines and planes. |  |  |
| 3 $\begin{array}{l}\text { To } \\ \text { and }\end{array}$ | To make the students able tounderstand orthographic projections of simple solids and their sections and development of curves for lateral surfaces |  |  |
| 4 To 1 | To make them capable to prepare engineering drawing using CAD software. |  |  |
| 5 To | To make them capable to prepare engineering drawing using CREO software. |  |  |
| Pre-requisites: Knowledge of basic geometry. |  |  |  |
| Course Contents / Syllabus |  |  |  |
| UNIT-I | Introduction |  | 6 hours |
| Introduction to engineering graphics, Convention for Lines and their uses, Symbols for different materials and surface finish, Methods of dimensioning, Scales, Cycloidal curves and involutes. (1 Sheet) |  |  |  |
| UNIT-II | Projection of points, lines and planes |  | 6 hours |

Projection of points, lines and planes. (1 Sheet)

| UNIT-III | Projection of solids and Sections of solids and <br> Development of surfaces | 6 hours |
| :--- | :--- | :--- |

Orthographic projections of regular solids. Projection of section of regular solids. Development of lateral surfaces of regular solids(2sheet)

| UNIT-IV | Introduction to CAD | 9 hours |
| :--- | :--- | :--- |

Introduction to Computer Aided Drawing: Drawing practice using various commands (Array, block, scale, fillet, chamfer, hatch etc.), Absolute coordinate systems, Polar coordinate systems and relative coordinate systems, Drawing practice using dimensioning, Drawing of 2D planes; circle, polygons, ellipse etc, Drawing practice using 3D primitives; Drawing of cone Prism, pyramid etc.; Create solids using extrude, revolve commands, Working drawings of various mechanical systems. (4 Sheets)

| UNIT-V | Introduction to CREO | 9 hours |
| :--- | :--- | :--- |

Introduction to CREO Parametric, features of CREO, concepts- modeling, parametric, associative, feature based, sketch entities- inference lines, center lines, circle, arc, ellipse, rectangle, slots, polygon, etc, sketch tools- fillet, chamfer, offset, trim, extend, split, mirror, move, copy, rotate, scale, stretch etc. dimensioning (4 Sheets)

Course outcome: After completion of this course students will be able to

| CO 1 | Apply the basic principles of engineering graphics to draw various types of <br> Scales, Cycloidal and involutes curves. | $\mathrm{K}_{1}, \mathrm{~K}_{2}$ |
| :--- | :--- | :--- |
| CO 2 | Draw and develop the projections of points lines and planes. | $\mathrm{K}_{1}, \mathrm{~K}_{2}$ |
| CO 3 | Draw orthographic projection of solids and their sections and draw the <br> lateral surfaces. | $\mathrm{K}_{3}$ |
| CO 4 | Apply CAD software to draw 2D and 3D drawing. | $\mathrm{K}_{2}$ |
| CO 5 | Apply CREO software to draw 2D and 3D drawing. | $\mathrm{K}_{2}, \mathrm{~K}_{3}$ |

## Text books

A Textbook of Engineering Drawing- Dr R.K. Dhawan, S.Chand Publication, Revised edition-2015
Engineering Graphics and Design- P.S. Gill, Katson books, Revised edition-2018

## Reference Books

(1) Engineering Drawing - N.D. Bhatt \& V.M. Panchal, 48thedition, 2005- Charotar Publishing House, Gujarat.
(2) Computer Aided Engineering Drawing - S. Trymbaka Murthy, - I.K. International Publishing House Pvt. Ltd., New Delhi, 3"revised edition-2006

## Video links

## Unit 1

https://www.youtube.com/watch?v=uojN7SOHPBw
https://youtu.be/w2-a EzO4-Q
https://www.youtube.com/watch?v=n9iQcttWHAo

```
Unit 2
https://www.youtube.com/watch?v=fK4h5gM73w8&list=PLIhUrsYr8yHxEk Jv8yOatnDcr6KYK3j
https://www.youtube.com/watch?v=FtugLo9DMw8&list=PLIhUrsYr8yHz_FkG5tGWXaNbIxVcibQvV
https://www.youtube.com/watch?v=AoNIOxnxDO0&list=PLIhUrsYr8yHx7TVB51jN3HZVyW3R6RiBg
Unit }
https://www.youtube.com/watch?v=YV4RZNQ2yB8&list=PLIhUrsYr8yHxARPzEFz1nXgt8j6xF tEm
https://www.youtube.com/watch?
v=vlYAGkWmiW8&list=PLIhUrsYr8yHwdB96ft6c0Uwc4SDCLuG1v&index=5
https://www.youtube.com/watch?
v=Vo9LC9d7FQA&list=PLIhUrsYr8yHxVky7bfrnbRcdXcHjT_K83&index=1
youtube.com/watch?v=t9gepMkey0w&list=PLItCiRV7ABU4SUL7gYOSiwmMIN1t_-gQ1&index=2
Unit 4
https://www.youtube.com/watch?v=ifM0JQ6-Nus
https://www.youtube.com/watch?v=tHrfxjgFQt8
https://www.youtube.com/watch?v=c1kGuiYEHh0
https://www.youtube.com/watch?v=UKpCFYWK7q4&t=14s
https://www.youtube.com/watch?v=R8Hd7DUZcF0
https://www.youtube.com/watch?v=rzXWDgfcxec
https://www.youtube.com/watch?v=QnN8A1mIUYY
https://www.youtube.com/watch?v=Gx3yy51KumA
https://www.youtube.com/watch?v=tnylweRokkw
Unit 5
https://www.youtube.com/watch?v=sVWsUS 7V6s
https://www.youtube.com/watch?v=KsMil9ND5E8
https://www.youtube.com/watch?v=GGxmUWBoqcg
```

| B. TECH FIRST YEAR |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Course Code |  | AME0252 |  | L T P | Credit |
| Course Title |  | Engineering Graphics \& Solid Modelling |  | 0 0 0 3 | 1.5 |
| Suggested list of Experiment |  |  |  |  |  |
| Sheet No. | Experiment No. |  | Name of Experiment |  |  |
| 1. | 1 |  | To draw plain scale and diagonal scale. |  |  |
| 2. | 1 |  | To draw projection of points, lines and planes. |  |  |
| 3. | 1 |  | To draw orthographic projection of regular solids. |  |  |
|  | 2 |  | To draw section of regular solids. |  |  |
| 4. | 1 |  | To draw development of lateral surfaces of simple solids. |  |  |
|  | 2 |  | To draw cycloidal or involute curve. |  |  |
| 5. | 1 |  | Initiating the Graphics Package; Setting the paper size, space; setting the limits, units; use of snap and grid commands in AutoCAD |  |  |
| 6. | 1 |  | To create 2D view of a center pin with given dimensions in AutoCAD. |  |  |
|  | 2 |  | To create 2D view of abase plate with given dimensions in AutoCAD. |  |  |
|  | 3 |  | To create 2D view of a bush with given dimensions in AutoCAD. |  |  |
| 7. | 1 |  | To create 3D view of a washer in AutoCAD. |  |  |
|  | 2 |  | To create 3D view of a guide pin in AutoCAD. |  |  |
|  | 3 |  | To create 3D view of a lock nut in AutoCAD. |  |  |
| 8. | 1 |  | To create drawings of given machine components in AutoCAD. |  |  |


| $\mathbf{9 .}$ | $\mathbf{1}$ | To understand basic of CREO |
| :--- | :--- | :--- |
|  | $\mathbf{2}$ | To understand basic sketching in CREO |
| $\mathbf{1 0 .}$ | $\mathbf{1}$ | To understand basic par modelling in CREO using different options <br> aiding constructions like extrude, hole, ribs, shell etc. |
| $\mathbf{1 1 .}$ | $\mathbf{1}$ | Introduction to CREO Parametric 'sketch features' (revolve, sweep, <br> helical sweep, sweep blend etc. |
| $\mathbf{1 2 .}$ | $\mathbf{1}$ | Introduction to CREO Parametric 'edit features' (group, copy, mirror <br> tool) and 'place features' (holes, shells and drafts). |

